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Calculations of the break-even condition for various noble carrier gases with alkali 
seed have been performed and are presented in graphical form. The results indicate 
that ion slip very strongly affects the break-even conditions. Generally speaking, seed- 
ing is desirable, and the most beneficial effects a re  obtained for heavy seed materials. 

INTRODUCTION k;lfM 
One of the key factors in obtaining high power density in magnetohydrodynamic 

(MHD) power generators is the achievement of high electric conductivity in the working 

"he principal results of this investigation were reported at the ASME Winter 
I Annual Meeting, New York City, Nov. 29-Dec. 4, 1964. The present report is a con- 
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fluid. In closed-cycle electric-power systems where seeded combustion plasmas a re  
inapplicable, this problem is particularly severe because, at the highest working fluid 
temperatures currently contemplated for nuclear reactors or heat exchangers, the equi- 
librium electric conductivity of even a seeded gas is far below that required for a rea- 
sonable power density. A nonequilibrium means of obtaining high electric conductivity 
is accordingly of great interest. 

The contemporary studies of nonequilibrium conductivity began with that of Kerre- 
brock (ref. 1). 
the electron temperature, at which the energy received by electrons from the electric 
field is balanced by that lost in collisions, can be considerably above the bulk gas tem- 
perature. He has in fact demonstrated the results to be well represented by a theory 
that assumes the ionization and recombination processes to be in equilibrium at the elec- 
tron temperature so that the electron population is that corresponding to equilibrium at 
the electron temperature. The validity of Kerrebrockrs hypothesis has been established 
for a cesium plasma by Ben Daniel and Tamor (ref. 2). 

Hurwitz, Sutton, and Tamor (ref. 3) noted that the electron heating effect might also 
be obtained using the induced electric fields present in MHD generator channels. In 
their paper, as in KerrebrockPs analysis, the electron temperature was determined by 
balancing the energy gained by the electrons from the induced electric field with the en- 
ergy lost by them in elastic collisions with the neutral atoms. They assumed that at the 
low degrees of ionization attained in generators, the electron-ion collisions would occur 
infrequently enough to be considered negligible. 

Reference 4 showed, however, that at the elevated electron temperatures resulting 
from electron heating, a degree of ionization might be attained where the dominant proc- 
ess for momentum and energy exchange is electron-ion collisions. This was found to be 
particularly the case in noble gases displaying the Ramsauer effect. The addition of 
easily ionizable seed to a carrier gas has the two effects of (a) increasing the electron 
density of the working fluid and (b) increasing the electron energy losses through colli- 
sion with seed atoms and ions, thus limiting the electron temperature. The first effect 
tends to augment the electric conductivity, while the second tends to decrease it. It was 
shown in reference 4 that in many cases for argon carr ier  gas with cesium seed the sec- 
ond effect was predominant, causing an overall reduction in electric conductivity. In 
fact, it was recommended in reference 4 that argon be used without seed as the working 
fluid i n  an MHD generator. This result is, however, sensitive to the values of the per- 
tinent collision cross sections. The correct calculation of the electrical conductivity 
depends on the average rate of momentum transfer in collisions, which in turn requires 
the averaging of the momentum transfer rate over the velocity distributions of the col- 
liding particles. In the previous investigations (refs. 1, 3, and 4), a value of the mono- 
energetic cross section corresponding to the average electron energy was chosen, which 

He considered the case of direct current gas discharges and showed that 

2 



is tantamount to ignoring the distribution of electron velocities. Furthermore, the prior 
investigations did not quantitatively consider the effect of the presence of both seed and 
carrier gas ions on ion slip. 

It is the purpose of the present report to  examine in an orderly manner the various 
consequences of the addition of seed to a carr ier  gas, including the aforementioned 
effects, and to establish a criterion to determine whether seed addition augments o r  de- 
creases the power density. The formulated criterion may be separately applied to each 
successive station of a segmented electrode Faraday generator. The formulation is 
given in general terms and may be used for arbitrary combinations of monatomic carrier 
and seed materials. 

ANALY S IS 

The criterion mentioned in the INTRODUCTION will now be obtained. The basic 
idea is to determine the condition for which the addition of a vanishingly small amount of 
seed either increases or does not change the power density (power generated per unit 
volume). The condition for which the power density is unchanged by the addition of seed 
will be called the break-even point. 

Basic Equations 

In reference 4, Ohm's law and the electron energy equation are derived, including 
the effect of ion slip, for a slightly ionized gas containing only one type of ion (ions of the 
carr ier  gas). In the present report, it is necessary to include both carr ier  gas ions 
(c+) and seed ions (s+). (Symbols are defined in appendix A. ) The details of the deriva- 
tion are given in appendix By where it is shown that all the basic equations of reference 4 
still apply, provided that the definition of the ion-neutral collision frequency via is 
appropriately modified (see eq. (B19)). 

The energy balance equation for the electrons is (ref. 4) 

2 
J 2 = 3 -  e2k6 (Te - TINe 

mC 

where J is the current density, e is the electron charge, k is the Boltzmann constant, 
mc is the mass of an atom of the carrier gas, Te is the electron temperature, T is 
the static gas temperature, and Ne is the number density of electrons. The factor 6, 
which is sometimes called the mean loss factor, is a dimensionless quantity defined for 
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elastic collisions as 

where the subscript t denotes each species of atom or ion that may be present, and vet 
is the average collision frequency for momentum transfer between the electrons and 
species t. The collision frequency is written 

where ( ve) is the average thermal speed of the electrons 

and Qet, the average cross section for momentum transfer, is 

Q et ( T ) = -  e 3 ( - 2kTe me )9 lm v5Q e m e  (v )exp ( g ) d v e  (t = i, a) (C 11) 

The quantity Qm(ve) appearing in the integrand of equation (C11) is the momentum 
transfer cross section for a monoenergetic beam of electrons of speed ve. Equation 
(C11) is the result of averaging the rate of momentum transfer in collisions over the 
velocity distributions of both the electrons and the species t of heavy particles (atoms 
o r  ions) in the manner described in appendix C. When the average momentum transfer 
cross section is calculated from equation (C11) for any one of the noble gases for some 
ranges of Te, the result is found to be as much as an order of magnitude larger than the 
value of Qm at beam energies equal to kTe. The difference between Qec(Te) and 
Qm is due to the large variation in Qm with ve for the noble gases displaying the 
Ramsauer effect. (If Qm were independent of ve, this difference would not be signif- 
icant, since in that case Qec(Te) = (4/3)Qm. ) Therefore, the use of the monoenergetic 
cross section instead of the average cross  section, as was done in references 1, 3, 
and 4, can lead to significant errors.  
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For a segmented-electrode MHD generator, Ohm's law is (ref. 4) 

J =  " uB(l - K) 
1 + BeBi 

(5) 

where u is the gas velocity, B is the intensity of the magnetic field (Wb/sq m), and K 
is the load parameter, which is the ratio of the actual voltage across the generator elec- 
trodes to the open-circuit voltage, 

E Kr- 
uB 

The conductivity uo is 

- Neez 
OO - q 

where 

is the total collision frequency for electrons. The electron Hall parameter Be is de- 
fined as 

e - el3 B =-=- 
e 'e meVe 

w 

where we is the electron cyclotron frequency. The parameter pi is 

where uia is the effective ion-neutral collision frequency. The value of Pi is a meas- 
ure of the slip of the ions through the neutral gas. The ion slip varies inversely with the 
gas density (through via) and directly with the magnetic field. The expression for via 
is derived in appendix B (see eq. (B19)). 
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1 The power density for the segmented electrode generator is 

P = JE = N e I F  (Te - T) KuB 

The seed fraction s, defined as 

NO 
S sr- 

% 
is the parameter of main interest. The number densities of seed and carr ier  gases in 
the absence of ionization are  denoted as N: and %, respectively, where 

N i  = Ns + N 
S+ 

N c = N c + N  0 + 

C 

The degrees of ionization of the seed and carrier gas are  

N 
C+ x 5- 

C 

N +  S 
x r- 

S 
s N O  

respectively. The condition of charge neutrality is 

'This is equivalent to the conventional formula 

2 2  001.1 B K(l - K) 
P =  

14- Pepi 

Equation (11) is more convenient for subsequent manipulations. 
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Ne = Ni = N + + N = (xC + SX,)~$ (17) 
S C+ 

It is assumed that the various ion and atom populations are in equilibrium with the 
free electrons at the electron temperature Te. Then the Saha equations (eqs. (4) and (5) 
of ref. 4) may be written for the seed as 

2gs+ 2nmekTe 3/2 
(xc + sxs)xs =--( 1 

h2 ) e-(%) 1 - xs NE gs 

and for the carrier gas as 

1 - xc 

where gs and gc are statistical weights for the ground states of the seed and carr ier  
atoms, respectively, g + and g + are statistical weights of the ground states of the 

S C 
seed and carrier ions, respectively, and Vs and Vc are the first ionization potentials 
of the seed and carrier gas, respectively. 

Condition for Operation Without Seed 

The power density, current, conductivity, electron density, and temperature all 
depend on the seed fraction s. Suppose that the generator is operating without seed 
with a prescribed load parameter K, magnetic field By and gas velocity u. The prob- 
lem is to determine the direction in which the power density varies when a small amount 
of seed is added. For this the sign of dP/ds in the neighborhood of s = 0 must be de- 
termined. When dP/ds = 0, the break-even condition will be attained, and this condi- 
tion will require a certain relation between the operating parameters. 

With the aforementioned assumptions, the electric field E is fixed, and the frac- 
tional change in the power density caused by the addition of seed is, from equation ( l l ) ,  

1 d P - l d J -  1 me 1 1 dTe 1 dd - - _ _ - -  --+---+-- 

From equations (l) ,  (5), and (7), it follows that for fixed K, u, and B 
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2 2' ve( l  + Pepi) (Te - T)6 = const 

Logarithmic differentiation of equation (21) gives 

dT- 1 d 6  - + - - = o  1 
Te - T ds 6 d s  

2 
1 + Pep, 

Since ve, via, and 6 are  known functions of s and Te(s), equation (22) may be used to 
determine dTe/ds. Then the resulting expression for dTe/ds can be substituted into 
equation (20) to yield an expression for dP/ds. The details of this derivation a re  given 
in appendix D, where it is shown that dP/ds 2 0 if  

2eVc 

( 3+- 2eVc + A)] 
C kTe Te - T 

L G 

The number n is simply the exponent in a semiempirical relation for the cross section 
Qec - T: for scattering of electrons by carr ier  gas atoms. Typically, n is of the 
order 1. The quantity \k, which is defined in equation (D18), is related to the differ- 
ence in mobilities of the two ion species in the carr ier  gas. 

been assumed that as s approaches zero, the degree of ionization of the seed ap- 
proaches one; hence, the ionization potential and cross section of the seed do not appear. 
From equations (18) and (19), it can be shown that for s = 0, xs M 1 to a high degree of 
approximation. 

The inequality (23) is an implicit relation between Te, q, B, and T, which estab- 
lishes a range of electron temperatures in which the power density is not increased by 
seeding. It is not possible to obtain an explicit relation, because the various terms of 

The aforementioned relation (eq. (23)) is derived for the limit of zero seed. It has 
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equation (23) are not simple functions of Te. It is convenient for calculational purposes 

fixed values of Te and T, the limiting magnetic field is then calculated over the allow- 
able range of gas densities %. From curves of B against NF, the break-even value 
of I$ corresponding to any given magnetic field may be found for prescribed values of 
Te and T. 

depends on the rate of Joule heating through equation (1). Thus it is necessary to estab- 
lish whether or not any prescribed electron temperature is actually attainable. The cri-  
terion for this is the value of the gas velocity u required to produce a given electron 
temperature. The required gas velocity is obtained from the relation 

to  assign NE, Te, and T and to calculate pepi, which is proportional to B 2 . For 

The electron temperature is, of course, not an independent parameter, because it 

uB(l - K) = :Gc (1 + f l e p i ) v e i F  

which follows from equations (l), ( 5 ) ,  and (7). (Note that 6 = 1 in the limit of zero 
seed. ) Finally, the break-even condition is conveniently expressed as a family of 
curves of uB(1 - K) against % for various values of B and T. In appendix E, a 
sample calculation is given in order to clarify the details of the calculational procedure. 

RESULTS AND DISCUSSION 

Although the break-even condition (the equality in relation (23)) is utilized in the 
manner just described to obtain numerical results, it is of interest to consider the 
simpler forms to  which it reduces in special cases so that the physical meaning of the 
condition may become clearer. 

Zero Ion Slip 

A useful limiting case is that in which ion slip is  neglected. Then Pi = 0, and the 
right side of relation (23) must also be zero. The break-even condition for zero ion slip 
is further simplified for small degrees of ionization. For this case (xc << 1 and 
s = O), equation (19) may be written 



where 

From equations (3) ,  (13), and (17), for xc << 1, 

eXP (s) 
'ei - C Qei Qei 

Qec "ec 1 - xc Qec 
-_--- - - xc 

Thus, for xc << 1 and s = 0, equation (23) yields the following quadratic equation for 
the ratio vec/vei: 

where 

a = 2 n + l + -  Te 
Te - T 

Te - 3 +  1 - -  - -  :r(+2 + T e - T  Te ) (29b) ( :)E kTe 
b = 2 n + l +  

Te - T 

+2) T 

kTe Te - T 

Break-even operation of course corresponds to the equality sign in the relation (28). 
Since a and c a re  positive, equation (28) has only one positive root, namely, 

G c - b  
2a 

The corresponding gas density is 
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I which is the gas density for break-even operation with zero ion slip. At higher gas 
densities, vec/vei > (vec/vei)lim, and inequality (28) is not satisfied. Hence, seeding 
increases the power density. At gas densities below (q)lim, seeding will decrease the 
power density. It is not difficult to understand why the ratio of collision frequencies is 
the critical parameter for break-even operation without seed. At gas densities larger 
than that given by equation (31), electron-atom collisions account for most of the re- 
sistivity of the gas. According to equations (3), (7), and (8), the conductivity in that case 
is proportional to the degree of ionization. Seeding would then increase the degree of 
ionization and therefore improve the conductivity and power. At gas densities lower than 
break-even, where vei is much larger than uec, the conductivity becomes independent 
of the electron density and increases with the electron temperature. In this case, the 
addition of seed would lower the electron temperature (cf. eq. (D21)) and consequently 
decrease the conductivity and power density more than could be offset by the ionization 
of the seed. 

will increase the power density. Strictly speaking, it is an implicit relation for 
inasmuch as the gas density also enters into Qei through the term In A (see eqs. 
(C19) and (C20)). Equation (31) is used in the following manner to establish the break- 
even condition for zero ion slip. The electron and gas temperatures are assigned, a 
value for In A between 5 and 10 is assumed, and (NE)lim is calculated from equa- 
tion (31). The value of In A is recomputed with this density, and the calculation is re- 
peated a few times until i t  converges. The corresponding value of uB(l - K) is then 
calculated from equation (24). Appendix E contains a sample calculation. 

The results of such a calculation are conveniently represented in a graph of the 
voltage uB(l - K) plotted against the gas density N:. This form is convenient because 
the variation of the gas dynamic properties along a duct can easily be traced. 
constant velocity generator for which B and K are also constant, the state of the gas 
would be represented by a horizontal line, while a constant area generator with constant 
B and K would be represented on a log-log plot by a straight line of slope -1, since pu 
is constant. In general, K is not constant, and the generator operating curve is not 
straight, as will be seen subsequently. 

u re  1, where the atomic mass of the seed is assumed to be equal to that of the carr ier  
gas in order to reduce the number of parameters. For some combinations of gas and 
seed such as argon and potassium or xenon and cesium, this is very nearly the case. 

1 

~ 

1 

1 
' 
l 

1 

Equation (31) sets an upper l imit  on the gas density, above which the addition of seed 

I 

' 

For a 

The zero-ion-slip break-even condition for some of the noble gases is shown in fig- 

1 
l 
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Helium 

1011 I I l l l l l l l  I I 1 1 1 1 1 1  I I I 1 1 1 1 1 1  

1022 1023 1024 1025 
Gas density, Ng, atomslcu m 

1 I I I I I I l l 1  I I I I I , 1 1 1  I I I I I I I I I  
,001 . 01 . 1  1 

Gas pressure, a tm 

Figure 1. - Break-even curves for zero ion slip and equal atomic masses of carrier 
gas and seed. Static gas temperature, 5Oo0 K. 

When m = mc, b = a - c and equation (30) becomes 
S 

C 3 

2 n + 1 +  Te 
Te - T 

since Qec/Qei is usually of the order 10- 3 . Equation (32) can also be obtained quite 

directly from the right side of equation (23) by setting mc = mS and xc = 0. 
equation (32), it is clear that the electron-ion and electron-atom collision frequencies 
a r e  of the same order at break-even. 

There is no obvious reason why this should be so, but it is most likely due to the fact 
that the exponential variation of g(Te) in the formula for (No) 

C lim 
significant than the purely algebraic variation of the other terms. 

From 

The break-even curves in figure 1 a r e  for all practical purposes straight lines. 

(eq. (31)) is much more 
To the right Of any one 

of these lines, NE > (NE) , and the power density is increased by seeding, whereas 
lim 
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loll 1 I I I l l l l l  I I I 1 1 1 1 1 1  I I I I i I i l J  
1ozL 1023 IC?~ ld5 

Gas density, N!, atomsku m 

I I I I I I I l l 1  I I I I I I l l 1  1 I I I I I I J  

.a31 .01 .1 1 
Gas pressure, atm 

Figure 2. - Effect of seeding with material whose atomic mass is greater than that of 
carrier gas. Argon; static gas temperature, !C@ K. 

seeding decreases the power density to the left of the line. 

different gases. It is evident from equations (31) and (26) that for a given electron tem- 
perature will increase exponentially with decreasing ionization potential and 
varies as the inverse square of the cross section Qec. 
proportional to Qec, since in the present case ve 
even curve for the gas with the lowest ionization potential should be closest to the lower 
right corner of the graph. Unfortunately, for the noble gases a low ionization potential 
does not go hand in hand with a low electron scattering cross section. In fact xenon, 
which has the lowest ionization potential, has one of the highest cross sections. The 
conflicting requirements on the ionization potential and cross section a r e  responsible for 
the location of the curves shown in figure 1. 

values of the operating parameters u, B, K, and I$ 
required by where the point representing the operating condition falls relative to the 

There is no easily discernible pattern in the location of the break-even curves for 

F’urthermore, uB(l - K) is 
vec(l + a/c). Therefore the break- 

The obvious way to use the curves of figure 1 is to choose a particular gas and the 
and to decide whether seeding is 
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break-even curve. If the break-even curve is below the operating point, addition of seed 
with atomic mass equal to that of the carr ier  gas will decrease the power density; 
however, the addition of seed with atomic mass different from that of the carr ier  gas 
may move the break-even curve to the other side of the operating point, which indicates 
that such seed will increase the power density. Examination of equations (28) to (30) 
shows that if the seed atoms a re  heavier than the carr ier  gas atoms, then the ratio 
( ~ ~ ~ / v ~ ~ ) ~ ~ ~  and (NZ)lim a re  decreased and the break-even curve is moved to the left. 
This behavior may be accounted for by the behavior of the elastic loss factor 6 defined 
by equation (2). If ms > mc, then the addition of seed decreases 6. Figure 2 illus- 
strates this effect when argon (atomic weight, 39.944) is seeded with cesium (atomic 
weight, 132.91). 

Effect of Ion Slip 

For pi # 0 the break-even condition is evaluated numerically, as described pre- 
viously and i n  appendix E. It is instructive to consider first the simplest case, where 
both the atomic masses and the mobilities of the seed and carr ier  gas a r e  equal. In this 
case, the loss factor 6 is unchanged by the addition of seed; and the quantity +, 
representing the difference in ion mobilities, vanishes. The break-even condition 
becomes 

Te - T 'e 'e PePi = c 

2eVc 

Te - T 

(33) 

When NE = (No) as 
Suppose that for a fixed 

c lim: 

from equations (25) and 

defined in equation (31), the numerator vanishes and pepi = 0. 

(27) that the degree of ionization will then increase, as will the 
ratio vei/vec. Therefore, Pepi will increase with decreasing NE. (The term contain- 
ing xc in the denominator is generally of less importance for small xc. ) Physically, 
the increase in Pepi is due to an increase in ion slip. Because of the lower gas density, 
ion-neutral collisions become less  frequent, and the mechanism for extracting part of 
the mechanical energy from the gas and using it to Joule heat the electrons becomes less  
effective. As  shown in figure 3, the effective electric field uB(l - K) required for  elec- 
tron heating is everywhere above that for  pepi = 0, the difference between the curves 
increasing as Pepi increases (see eq. (24)). This difference becomes large enough to 

Te, NE is continually decreased below (No) It is clear c lim' 
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104 I 1 I I I 1 1 1 1  1 I I I I I I I l  1 I l l l l l l l  

1023 1024 lou 
Gas density, N:, atDmslcu m 

1022 
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. 001 .01 .1 1 

Gas temperature. atm 

Figure 3. - Effect of ion slip on break-even curve for argon. Static gas temperature, 
so00 K; ms = mc; equal ion mobilities. 

turn the break-even curve upward at low density. The range of parameters over which 
seeding is advantageous is increased, since dP/ds > 0 everywhere below the break- 
even curve. 

For unequal atomic masses and mobilities of seed and carr ier  gases, the situation 
changes markedly from that of the preceding example, because the variations of the loss 
factor 6 and of the effective ion-neutral collision frequency via become appreciable. 
This can be ascertained from the numerical magnitudes of the second and fourth terms 
on the left side of equation (23), since eVc/kTe >> 1. Because the general break-even 
condition is quite sensitive to the ratios of ion mobilities and atomic masses of the seed 
and carr ier ,  as well as to the cross section and ionization potential of the carrier,  i t  is 
difficult to draw general conclusions from equation (23). Each combination of seed and 
carr ier  must be considered separately. The results are shown in figures 4 to 9 for a 
static gas temperature of 500' K (which is typical of supersonic generators) and for 
various magnetic fields. 
seeded helium, a r e  of a different character than figures 5 to 8. The break-even curve 

Figure 4, for cesium-seeded argon, and figure 9, for cesium- 
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of figure 4 has an upper and a lower branch corresponding to high or  low electron tem- 
peratures, respectively. In the regions above the upper branch and below the lower 
branch, seeding decreases the power density, while between the branches seeding in- 
creases the power density. The upper branch is similar to the curve of figure 3 and may 
be interpreted physically in the same way. In the region below the lower curve, the 
electron temperature is low and collisions of electrons with carrier gas atoms limit the 
conductivity. The addition of very small amounts of seed changes the conductivity only 
slightly, but because the seed ions are more mobile than ions of the carr ier  gas, seeding 
causes ion slip to increase more rapidly than the conductivity, which causes the factor 
o0/( 1 + Pepi) in the power density to decrease. Although seeding is not required in the 
region below the lower branch, this region is of little practical significance because of 
the low electron temperature and consequently the small degree of ionization and low 
power density. 

corresponds to high electron temperatures and low gas densities (this branch is not 
shown in figs. 5(c), 6(c), and 7, since it falls outside the range of electric fields and 
gas densities of interest). The lower branch, corresponding to higher gas densities and 
lower electron temperatures, is below and to the right of the break-even line for zero 
ion slip. Instead of crossing the zero ion slip line, as in figures 4 and 9, this lower 
branch becomes tangent to it. The different character of the break-even curves of fig- 
ures 5 to 8 from those of figures 4 and 9 is due to the variation in  the mobilities of 
carr ier  and seed ions among the various combinations of car r ie r  and seed. 

Seeding increases the power density in two regions of figures 5 to 8, above the 
upper branch, and to the right of the lower branch. In the first region, the effective 
electric field uB(l - K) is generally too high to be attained in practice. 
densities and field strengths in the second region are of more practical interest. 

A typical generator operating curve is indicated by the short dashed curve in fig- 
ures 4(b) and 5(b) for argon. 
the cases that was extensively investigated in reference 5. In that reference the one- 
dimensional MHD equations were solved for a constant-area channel, where the nonequi- 
librium conductivities of seeded r a r e  gases were calculated on the same basis as they 
are herein. The electric field E was taken to be constant in reference 5, as required 
by Maxwell's equation for the assumed one-dimensional situation. Since the gas velocity 
varies along the generator duct, for  this case it is convenient to define a new constant 
load parameter K1 as 

The break-even curves of figures 5 to 8 have also two branches. The upper branch 

The range of gas 

The generator operating conditions a r e  taken from one of 

E 
K1 =- 

ulB 
(34) 
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where u1 is the gas velocity at the entrance section. When this definition is combined 
with conservation of mass, pu = p u 
obtained: 

the following equation for the operating curve is 1 1' 

U 

The dashed curves shown in figures 4(b) and 5(b) are for an entrance Mach number of 
3.0 and an entrance stagnation temperature of 4000' R (2222' K), for which the entrance 
gas velocity u1 is 1316 meters per second. For a magnetic field strength of 2 webers 

5 per square meter, a stagnation pressure of 1 .64~10 newtons per square meter 
(1.62 atm) yields the optimum power density (ref. 5). The same conditions are assumed 
herein. In this case it can be seen that the addition of cesium will increase the power 
density except at the very end of the operating line. 
with reference 5, in which the addition of a very small amount of cesium seed 
(s = 0.000366) to argon carr ier  gas was found to yield the optimum total power output. 
Figure 5(b) shows that seeding with potassium is detrimental to the power density 
throughout the generator. Potassium seed was found to be inferior to cesium in refer- 
ence 5, but potassium-seeded argon still produced a higher total power than unseeded 
argon. The mobility of ions, however, was calculated on the basis of the polarizability 
of the carrier gas atoms in reference 5. Such a calculation gives equal mobilities of 
argon and potassium ions in argon, whereas the mobility of argon ions in argon is less 
than that of potassium ions in argon because of charge exchange. Inclusion of charge ex- 
change in this report accounts for the difference in conclusions regarding seeding of 
argon with potassium. 

This conclusion is in agreement 

. 

The upper limit on the gas velocity is 

I 1500 2000 2500 3000 

U max = )/2cpT0 

The values of umax a re  useful in interpreting 

TABLE I. - MAXIMUM GAS 

VELOCITIES where cp = 2 k is the constant pressure speci- 
mc 

a s  1 Stagnation temperature, T ~ ,  O K ~  
t- fic heat and T, is the stagnation temperature. 

I I Maximum gas velocity, m/sec ~ the results and a r e  given in table I. The maxi- 

Argon 
Xenon 

mum attainable electric field and voltage may be 

magnitude of the available magnetic field. At the 
present time, a magnetic field of 2 webers per 

2030 2270 2486 estimated from these values of umax and the 
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Figure 10. -Effect of gas temperature on break-even curves for cesium-seeded argon. 
Magnetic field strength, 2 webers per square meter. 

square meter (20 000 G) is typical of MHD generators. For this magnetic fie-1 and 
K = 0.5, the maximum attainable field uB(l - K) is equal to umax in magnitude and is 
of the order of 10 volts per meter. With a very high magnetic field, say  B = 10 
webers per square meter (100 000 G), the magnitude of uB(l - I() may reach lo4. 

3 

Effect of Static Temperature 

III figures 1 to 9 the gas temperature was taken to be 500' K, a typical value for 
supersonic generator. The effect of changing the gas temperature from 500' to 1500° K 
is shown in figure 10. The break-even curves for zero ion slip are very slightly af- 
fected by the gas temperature. However, the character of the curves for Bi # 0 varies 
significantly with gas temperature in the range from 500' to 600' K; and in fact, for gas 
temperatures of 600' K and higher, the break-even curves for cesium-seeded argon have 
the same character as the curves for the other combinations of gas and seed at 500' K 
shown in figures 5 to 8. Since there is insignificant variation of the alkali ion mobilities 
in the noble gases with temperature, the change in the character of the break-even 
curves that accompanies a change in gas temperature is due to the variation of the 
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Figure 11. - Correlation of break-even curves when plotted as function of N",B 
for cesium-seeded argon. Static gas temperature, 500' K. 

mobility of the carr ier  ions with temperature, caused by charge exchange (see the dis- 
cussion in appendix E). 

Effect of Magnetic Field 

Finally, it is interesting to note that the break-even curves for various magnetic 
fields fall rather close together when u( l  - K) is plotted against Nz/B, as shown in 
figure 11 for a constant gas temperature of 500' K. This fact may be used to estimate 
roughly the location of the break-even curves for various magnetic fields when the shape 
of the curve for one magnetic field is known. 

GENERATOR PERFORMANCE WITH UNSEEDED GASES 

The purpose of the preceding analysis was to establish the regions of operation of a 
generator where the addition of alkali seed to a given noble carrier gas would increase 
the power density. A comparison of various combinations of seed and carr ier  gases re- 
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Figure 12. - Performance parameters as functions of electric 
field for unseeded argon. Magnetic field strength, 2 webers 
per square meter; static gas temperature, K. 
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Figure U. - Performance parameters as functions of 
electric field for unseeded neon. Magnetic field 
strength, 2 webers per square meter; static gas 
temperature, !j@ K. 
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Figure 16. - Comparison of power densities of unseeded noble gases on basis of equal stag- 
nation temperatures. Magnetic field strength, 2 webers per square meter; static gas 
temperature, X@ K; gas density, 1024 atoms per cubic meter. 

quires the calculation of the power density for each combination at the operating condi- 
tions of interest and-for various seed fractions. Since these calculations have been car- 
ried out in reference 5, including the variation in properties along the generator channel, 
extensive calculations of this nature are unwarranted for the purposes of this report. 
However, the magnitude of the power density for zero seed does provide an idea of the 
best choice of carr ier  gas. For assigned values of B, NE, Te, and T, uB(l - K) is 
calculated from equation (24), and the result is substituted in equation (11) to yield the 
power density parameter P(l - K)/K. The electron temperature Te, pepi, and 
P(l - K)/K a r e  plotted as a function of the effective electric field uB(l - K) in figures 
12 to 15 for unseeded argon, neon, xenon, and helium. Note that the scale of uB(l - K) 
in  the helium curves (fig. 15) extends one decade higher than the scales for the other 
gases. At any specified value of uB(l - K), the power densities for argon equal or ex- 
ceed those of the other gases. The single exception is xenon, which produces higher 
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Figure 17. - Momentum transfer cross sections of noble gases. 

power at a gas density of atoms 
per cubic meter because the mobility 
of xenon ions in xenon is smaller 
than that of argon ions in argon. 

A comparison of power densities 
on the basis of equal stagnation tem- 
peratures, rather than equal values 
of uB(l - K), is shown in figure 16. 
The curves shown a r e  simply the 
curves of figures 12(c), 13(c), 14(c), 
and 15(c) for a gas density of 10 
atoms per cubic meter, a magnetic 
field of 2 webers per square meter, 
and a static gas temperature of 
500' K. The scales of uB(l - K) 
are shifted so  that a single vertical 
line corresponds to the same stagna- 
tion temperature for all four of the 
carrier gases. The dashed lines in- 
dicate a few stagnation temperatures. 
Any two of the abscissa scales a r e  
shifted with respect to each other by 
an amount equal to the square root 
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of the ratio of their atomic weights, since u = )/2c (T - T) and c 
Figure 16 discloses that argon produces the highest power at low values of uB(1- K), 

but as uB(l - K) increases, the power production in neon and helium exceeds that of 
argon. Although helium yields the highest power densities when uB(l - K) is greater 

3 than about 4x10 volts per meter, argon and neon appear to be the best for operation 
over a wide range of uB(1 - K). The latter a re  in fact the carrier gases with the lowest 
electron elastic scattering cross sections at temperatures of the order of 1 electron 
volt. The complete channel calculations of Heighway and Nichols (ref. 5) showed that 
with regard to neon and argon carriers,  the optimum overall power output for cesium- 
seeded argon was 15 percent larger than that for cesium-seeded neon. At the entrance 
section of their generator, however, neon-cesium yielded a power density about twice 
that for argon-cesium. The overall power output of cesium-seeded helium was found to 
be considerably less than that of argon and neon. These results can be understood on 
the basis of figure 16, since the power density in neon and helium, although larger at 
high values of uB(l - K), fall off with decreasing uB(l - K) faster than it does in argon. 

l/mc. P O  P 
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In a supersonic, constant-area generator, uB(1 - K) drops off rapidly, as shown by the 
operating curve of figure 4(b), because u decreases and K increases, and therefore 
argon, which produces the highest power density at low values of uB(l - I(), also pro- 
duces the highest overall power output. Although the gas density does not remain strictly 
constant through the generator, its variation is not significant, as can be seen from fig- 
ure  4(b), and the interpretation of the results of reference 5 by means of the constant 
gas density curves of figure 16 should be qualitatively correct. The behavior of the 
curves of figure 16 is not surprising in view of the variation of the elastic-scattering 
cross  sections of the noble gases (fig. 17, p. 26) with decreasing electron temperature. 

The vertical lines in figure 16 corresponding to various stagnation temperatures 
were drawn under the assumption that B(l - K) = 1 or K = 0.5 for the particular case 
shown of B = 2 webers per square meter. 

CONCLUM NG REMARKS 

The consequences of the addition of alkali seed to  a noble carrier gas in an MHD 
generator have been examined from the point of view of realizing magnetically induced 
nonequilibrium ionization. An examination of the physical bases of the results tends to 
identify the desirable properties of carr ier  and seed materials for this optimization of 
power density. 

The important properties of carr ier  gases are that (1) they be of low molecular 
weight so as to yield large induced electric fields for a given stagnation temperature and 
(2) they have low cross sections to elastic scattering of electrons so that the electrons 
will tend to higher temperatures, resulting in high electric conductivity. The seed on 
the other hand should have (1) low ionization potential so that in low concentrations i t  is 
fully ionized, (2) high molecular weight to minimize electron energy loss, and (3) low 
cross  sections to  elastic scattering of electrons for the reason mentioned previously with 
regard to the car r ie r  gas. 

suitable carr ier  gases while cesium is the most suitable seed. 
operating conditions using these carriers, higher power densities will likely be obtained 
with seed rather than in the absence of seed and with cesium seed rather than with any 
lighter alkali gas. 

It should be pointed out that the present analysis directly answers the question of 
whether the power densityincreases or  decreases with the addition of seed only in the 
limiting case where the seed fraction approaches zero. The conclusions cannot be ex- 
tended to arbitrary seed fractions since the power density does not necessarily vary 
monotonically with seed fraction. In fact, the results of reference 5 indicate that for a 

For the gas combinations considered herein, neon and argon appear to be the most 
For reasonable generator 
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case where the present analysis indicates the desirability of seeding there is an optimum 
seed fraction beyond which power density decreases with increase in seed fraction. 

elastic collisions and radiation losses. The analysis of the combined effect of these 
processes on nonequilibrium ionization in a seeded plasma is a formidable problem, but 
one which is important enough to warrant further study. 

Another important restriction of the present analysis is due to the omission of in- 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 12, 1965. 
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APPENDIX A 

A 

a 

B 

b 

J 

K 

Krt 
k 

mr 

mrt 

SYMBOLS 

Mks units a re  used except where explicitly noted otherwise. 

atomic weight 

defined by eq. (29a) 

magnetic field strength 

defined by eq. (29b) 

impact parameter for 90' 
coulomb scattering 

defined by eqs. (B15) 

defined by eq. (29c) 

defined by eq. (D22) 

Debye length, eq. (C14) 

electric field 

electron charge, ' 

1. 602x10-19 C 

ground state degeneracy 

defined by eq. (26) 

Planck constant, 
6 . 6 2 5 ~ 1 0 - ~ ~  J-sec 

current density 

load parameter defined 
by eq. (6) 

defined by eq. (C3) 

Boltzmann constant, 
1 . 3 8 0 x i o - ~ ~  JPK 

th mass of particle of r 

reduced mass of particles 
species 

r and t 

Nr 

NO r 

NO 

n 

P 

Qc 

Qm 

Qrt 

Rrt 
S 

T 

number of particles or 
rth species per unit 
volume 

sum of number densities 
of ions and atoms of 
species r 

defined by eq. (31) 

standard gas density, 
19 

exponent in eq. (Dll) 

power density 

total cross section for 
scattering of mono- 
energetic beam, 

2.69X10 atoms/cu cm 

eq. (C25) 

momentum transfer cross 
section for scattering 
of monoenergetic beam 
definedbyeq. (C6) 

collision cross section 
for momentum transfer 
fromspecies r to 
species t averaged 
over Maxwell distribu- 
tion, eq. (C10) 

defined by eq. (D13) 

seed fraction defined by 
eq. (12) 

static gas temperature 
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Tr 

U 

V r  

V 

vr 

Wd 

wi 

wr 

xC 

S 
X 

(11) 
'rt 

a! 

Pe 

Pi 

6 

€ 

€0 

temperature of rth species 

gas velocity 

ionization potential of r th 

species 

relative speed of particles 
th velocity of particle of r 

species 

difference in ion drift velocities 
defined by eq. (19) 

mean ion drift velocity defined 

drift velocity of rth species 

by eq. (B8) 

degree of ionization of carrier 
gas defined by eq. (15) 

degree of ionization of seed de- 
fined by eq. (16) 

cross section for momentum 
transfer from species r to 
species t averaged over 
Maxwell distribution defined 
by eq. (C5) 

mean thermal speed, eq. (C4) 

electron Hall  parameter defined 
by eq. (9) 

eq. (10) 
ion slip parameter defined by 

mean elastic energy loss factor 
defined by eq. (2) 

defined by eq. (B31) 

permittivity of free space, 
8. 854X1O-l2 F/m 

A 

h 

P 

10 

'e 

'ia 

'r t 

P 

OO 

X 

!P 

52 

we 

ratio of Debye radius to impact 
parameter for 90' scattering 
defined by eq. (C16), eq. (C19) 

defined by eq. (B20) 

Subscripts : 

a atom 

C carr ier  gas atom 

C+ carrier gas ion 

e electron 

i ion 

max maximum 

min minimum 

ion mobility 

ion mobility at 300' K and gas 
19 density of 2. 69x10 

atoms/cu cm 

total electron collision frequency, 

eq. (8) 

effective ion-atom collision fre- 
quency defined by eq. (B19) 

mean collision frequency for 
momentum transfer from 
species r to species t 

gas density 

electrical conductivity 

scattering angle in center of 
mass coordinates 

defined by eq. (D18) 

scattering solid angle 

electron cyclotron frequency 
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, 

r rth species 
+ ( r  = e, i, a, c ,  c , s,  s+) 

s seedatom 

s+ seedion 

th t t species 
(t = e, i, a, c, c + , s, s+) 

0 stagnation conditions 

1 conditions at generator entrance 
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APPENDIX B 

CALCULATION OF ION SLIP FOR TWO ION SPECIES 

The d r i f t  motion of a species r of charged particles in crossed electric and magne- 
tic fields is described by the momentum equation (ref. 4) 

(B 1) (r = e, s+, c+; t = e, s + +  , c , s, C) e,(:* + G~ x 5) = mrtvrt(Gr - Gt) t 

where 

- 4 4 -  

E * - E + U X B  

._ 
is the effective electric field measured in a coordinate system moving with the mean gas 
velocity c, and mrt is the reduced mass of particles r and t, defined as 

m m  r t  

r 
mrt- + m t  

When written out in full for the electrons e, carr ier  gas ions c+, and seed ions s+, 
equation (Bl) becomes 

e: 

C+: 

S+: 

- 
= e(E* + 

+ x 5) 
+ ~ c + s + v c + s + ~ c +  - GsJ C 

4 

+ m + +v + +ts+ - Gc+) = e(E* + % + X g) 
s c  s c  S 
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As in reference 4, the atom drift velocities a r e  neglected, an assumption that is valid 
for small degrees of ionization. 

In reference 4, the drift motion of a single ion species for an unseeded plasma in 
crossed electric and magnetic fields was described by the momentum equation 

The aim here is to derive a similar equation for the combined drift motion of the two ion 
species in the seeded plasma. To accomplish this, it is convenient to define a meG ion 
drift velocity as 

4 Nc+Gc+ + Ns+Ss+ 
w. 
1 

Nc+ + Ns+ 

The difference in ion drift velocities 

wS+ Wd = wc+ - 

is also a convenient quantity. 

tion (B6) by Ns+, adding and making use of the definitions of Gi and Gd (eqs. (B8) 
and (B9), respectively): 

The following equation is obtained by multiplying equation (B5) by Nc+, equa- 

N#S+ 
+ms+s”s+s) 1.. 1 + ~ Nc+ + N,+ )2 p C + C Y C + C  + mc+s’c+s~ 

- (ms+cvs+c + ms+svs+sj G~ = e(E* + S~ x E) (BIOI 

In reducing the first term of equation (B10) to this form, use was made of the fact that 
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since the ion-electron collision frequency involves only the electron number density and 
electron temperature and not the properties of the individual ions (provided all the ions 
are singly charged), Also, ion-ion collisions cancel out because of conservation of 
momentum in collisions. 

from equation (B5). The resulting equation becomes 
An equation for the difference velocity Gd is formed by subtracting equation (B6) 

If 

then the ions drift with the same velocity. Since urt is proportional to Nt, equa- 
tion (B13) can be satisfied for arbitrary seed and carr ier  gas densities only i f  the col- 
lision coefficients for each ion species with the seed and carr ier  gas atoms a r e  the same, 
that is, only if 

mc+cvc+c = ms+cvs+c (B 14a) 

mc+svc+s - - ms+svs+s (B14b) 

Unfortunately, conditions (B14) a re  generally not satisfied. 

The following abbreviations a r e  introduced: 

Therefore, it is neces- 
sary to solve equation (B12) for Gd in terms of ci and substitute the result in equa- 
tion (B10). 
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c3 E mc+s+v,+s+ + ms+c+vs+c+ + mevie 

When compared to the other terms in equation (B15c), mevie is of the order (me/mi) 
and therefore may be neglected. Then equation (B12) may be rewritten as 

which may be easily solved by premultiplying both sides by the operator 

ei5 

c4 
1 - -  

and using the fact that zd is perpendicular to ii. Then 

c1 - c2 1 

c4 1 + ($ 
If equation (B17) is substituted into equation (BlO), the resulting equation can be 
written in a form quite similar to that of equation (B7), namely, 

mC 
mevie(Gi - T,) + 2 v i a ~ i  = e [E* + (1 + A)G~ x G] 

where now the effective ion-neutral collision frequency is defined as 
r 

v. = ia 
I sxS 

(xc + sxs) c4 l+($J 
c2 - 

S 
+ xc + sx 

and 
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The collision frequency for electrons with any single ion species A+ in a mixture of 
singly charged ions is 

where the electron-ion collision cross section Qei is determined by the coulomb inter- 
action between electron and ion and is therefore the same for all singly charged ions 
(see appendix C for the exact expression). In the present case, the total electron-ion 
collision frequency is 

where 

If the total electron-atom collision frequency is written 

and use is made of the definition of Gi (eq. (B8)) and equations (B22) and (B23), equa- 
tion (B4) may be written in the form 

-c 
- 4  4 

m v .(we - wi) + m v = -e(E*- + 5, X G> e ei e eaWe 

which is identical to equation (36) of reference 4. 

tions (B18) and (B25). The total current 
Ohm's law and the expression for the electron heating rate a re  obtained from equa- 

and the electron current 
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0 

J = - N ew', e e 

are introduced into equations (B25) and (B18), which become 

(B28) 
2-* - - -m u . J - m  e u ea J e =-Nee E + e J e x B  

- 
e ei 

- 0  - 
. (B29) - mc 2- m u .J +- uia(J - Je) =Nee E* + e ( l  + A)(J - Je) X B e ei  

Addition of equations (B28) and (B29) and solution of the resulting equation for ze by 
the same device as employed in the solution of equation (B16) yield 

- 
J =  e 2 2 2  (1+€) + A  Pi 

where 

me "ea E G 2 - -  
m u. c ia 

and 

2eB 
m u. 

8. = - 
c ia 

muation (B30) is substituted into equation (B28), which may then be put in the following 
form: 

-* 1 (JOE = 

+ A ( l + X ) p f - ~  

where (Jo is the conductivity 
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2 
Nee 
m u  

00 = - 
e e  

and the electron Hall  parameter Pe is defined as 

eB w p =e3-- 
'e meVe 

e 

- 
The electron heating rate Je E* is, from equations (B30) and (B32) 

4 -  J2 1 Je . E* = -  
[(l + E ) 2  + X 2 2 2  Pi] 

+ 3 [1 + E + x( l  + X ) P Y }  + pepiE [1 + E (1 + 
'e 

2 Since E and Pi a r e  both much smaller than 1, and h for small seed fractions 
2 2  ( s  < 0. 1) is of order 1 or less, terms of order E ,  E X ,  and X Pi can be neglected in 

equations (B32) and (B33). Thus, the simplified equations a r e  

"* = ( I  + P e t ) ? -  P e - X J  5 -  
OOE B 

(3334) 

which are formally identical to equations (49) and (51) of reference 4. The only modifi- 
cation is that via is defined differently now (eq. (B19)). In the limit of zero seed, via 
reduces to v ~ + ~ ,  as it should. 
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APPENDIX C 

MOMENTUM TRANSFER CROSS SECTIONS AND COLLISION FREQUENCIES 

The collision frequencies vrt used in this report refer to the average rate of 
momentum transfer from species r to species t per particle of species r. The 
average rate of momentum transfer from species r is 

Jm3. (2) coll d3vr 

where (6fr/6t)coll denotes the rate of change of the distribution function f r  due to col- 
lisions. Burgers (refs. 6 and 7) has obtained an explicit expression for (Cl) by assum- 
ing that the distribution function is close to Maxwellian. In the first approximation, he 
obtains 

where Tr and Tt are  the drift velocities. The friction coefficient Krt is defined as 

where mrt is the reduced mass 

mr mt 
m + mt r 

mrt = 

2 a is a mean thermal speed 

2As noted in reference 4, Burgers? results apply to only the case Tr = Tt = T, but 
equation (C4) represents the proper generalization of Burgers? work to the case of d i f -  
ferent temperatures. 
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and Z::') is an averaged cross section for momentum transfer, defined as 

- 4  

where v = Ivr - vtl is the relative speed. 

The quantity Qm (which Burgers denotes Srt ( 1) ) appearing in the integrand is the 

momentum transfer collision cross section for a beam of particles of velocity v and is 
defined as 

where ~ ( v ,  x) is the differential cross section for scattering through the angle x and 
dS1 the element of solid angle. 

The relation between vrt and Krt is (refs. 4 and 8) 

"rt = 
Kr t 

mrtNr 

2 
3 

- - -  (11) 
aNtZrt 

More often, the 2/3 factor is absorbed into the cross  section, and the average value of 
the relative speed, which is 

is used in place of CY. Then vrt is written in the conventional definition as 

v r t  = Nt( V) Qrt  

Clearly, 
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For collisions between electrons and atoms or  ions, the relative speed v is very 
nearly equal to ve, and a 
duced to ‘ 

(ZkT , /~n~) l /~ ;  hence equations (C10) and (C5) may be re- 

The well-known Rutherford cross section 

is used to calculate Qm for collisions of electrons with singly charged ions. When 
equation (C12) and the formula dS2 = 27r sin x dx are substituted into equation (C6) and 
the integration is performed over all scattering angles from 0 to n, the result is 

Due to the long range nature of the coulomb potential, this integral diverges at the lower 
limit. Actually, the maximum range of the electrostatic field of an ion is of the order of 
the Debye length, which is (ref. 9) 

, d=($) 1/2 

At distances larger than d, electrons almost completely screen the field of the ion. 
Hence it is customary to replace the lower limit in equation (C13) by the minimum scat- 
tering angle Xmin, which is determined from the relation 1 
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where A is the ratio of the Debye length to the impact parameter bo for 90' scattering 
(ref. 9) 

e2 1 
2 

e e  4ne0 m v 

Ions also contribute to the screening effect, but as pointed out in reference 10, the time 
involved in an encounter between an electron and an ion is much smaller than the period 
of oscillation of the ions; hence, there is not enough time for the ions to respond to the 
fluctuation in charge caused by the passing electron, and the ions therefore cannot pro- 
vide effective screening for electron-ion collisions. 

The result of cutting off the integral in Qm at xmin is therefore 

2 o r  since A >> 1 

1nA 

2 On account of the slow variation of In A with ve, i t  is also customary to replace meve 
in equation (C16) by its average value, 3kTe, so that A becomes 

12n(e0kTe) 3/2 
A =  

3 1/2 
e Ne 
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Int gration of th- expression (C18) according to equation (C11) yields finally the average 
momentum transfer cross section for electron-ion collisions 

The ion-ion cross section for singly charged ions is derived from equations (C5) 
and (C10) by using a Rutherford cross section similar to equation (C12), but with me 
replaced by the reduced mass of the ions and ve by the relative speed v of the ions. 
The screening due to ions must also be included, since the ion-ion collision time is of 
the same order as the ion oscillation period. The correct Debye length d‘, including the 
effect of ion screening, is (ref. 10) 

1 1 1  

dt2 d2 di2 
-- - -+- 

where 

The result for the ion-ion cross section is 

2 
ln(hf2+ 1) 

Qii= E(&) 4“0 (kTi) 2 

where A’ is the ratio of the Debye length dy  to the average impact parameter for 90’ 
scattering of ions (e 2 /4mO)/3kTi 

12a(~,kT~) 3/2 
At = 

e3N.il/’ 

The ion temperature is assumed to be equal to the gas temperature T. Since 
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Te >> T, the last factor in equation (C24) may be set  equal to one. However, A' << A, 
and it is generally incorrect to make the approximation A' >> 1 in equation (C23). 

For electron-atom collisions, experimental values of the momentum transfer cross 
section Qm were used. The authors of reference 5 have evaluated Qet(Te) numerically 
for a number of gases in the range of Te from 100' to 15 000' K. Where experimental 
values of Qm were not available, they used the total cross section 

instead. The difference between Qm and Qc for most gases is less  than 10 percent 
(ref. 11, p. 31). The results for Qec(Te) for the noble gases a r e  summarized in fig- 
ure 17 onpage 26. 

hard-sphere model, in which Qm is independent of ve. In that case, equation (C11) 
yields 

In reference 4, it was assumed that electron-atom collisions could be treated by the 

4 
Qec = 3 Qm 

A constant value of Qm = 2. 0X1O-l7 square centimeter was used for argon in refer- 
ences 1, 3, and 4. This value was  inferred from monoenergetic cross section data 
(ref. 11, p. 19), which showed little variation over a range of electron energies below 
1 electron volt. The 
average momentum transfer cross section also r ises  rather rapidly with electron tem- 
perature. The necessity of using the properly averaged cross section is apparent. 

ionic mobility data. The mobility prt  of an ion of species r in a gas of species t is 
defined as 

From figure 17 it can be seen that this value was  far too low. 

The momentum transfer frequencies for ion-atom collisions a r e  calculated from 

where Tr is the drift velocity and E is the electric field. 
(Bl) and (C27) shows that the mobility for singly charged ions is related to the average 
momentum transfer urt by the formula 

Comparison of equations 

e 

"rt'rt 
p r t  = 
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Note that vrt is proportional and prt is inversely proportional to the density Nt. Ex- 
perimental mobilities are often referred to the standard gas density No = 2.69~1019 
atoms per cubic centimeter and the corresponding mobility denoted by p0, as in refer- 
ence 11, so that the mobility p at any other gas density N is 

45 



APPENDIX D 

DERIVATION OF BREAK-EVEN CONDITION 

The derivatives dNe/ds, dve/ds, dvia/ds, and dd/ds are required for the evalua- 
tion of dTe/ds and dP/ds f rom equations (20) and (22). Since the former quantities 
a re  functions of the degrees of ionization xc and xs of the carr ier  and seed gases, it is 
convenient to first calculate dxc/ds and dxs/ds. 

sulting equations for dxc/ds and dx,/ds yield 
Differentiation of equations (18) and (19) with respect to s and solution of the re-  

xc(l - xc) 
- -  - &C 

ds  xC(l - xC) + sxs(l - xS) + x C + sxS 

+ sxs(l - xs) --- 
Te ds 

xs(l - xs) 
- -  - &S 

ds xC(l - xC) + S X s ( l  - x ) + xC + sxS S 

Only the limiting forms of these expressions for s = 0 will be used here. It will be as- 
sumed that, in the limit of zero seed, the degree of ionization xs of the seed approaches 
unity. Numerical calculations carried out in the course of the work reported in refer- 
ence 4 for  s - < 0.01 support this assumption over the range of electron temperatures of 
interest. In fact, if  s is set equal to zero in equations (18) and (19) for xc << 1, the 
following expressions a re  obtained for x and xs: 

C 

N 

xs - 1 

1 +- JT 
FS 
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where Fs amd F, are the right sides of equations (18) and (19), respectively. The 
ionization potential of the carr ier  gas is several times larger than that of the seed, so 
that Fc << Fs; and since Fs > 1 for the range of electron temperatures of interest 
here, xs = 1 to a high degree of approximation. 

duces to 
With the aforementioned assumptions, in the limit of zero seed, equation (Dl) re-  

Since dxs/ds appears everywhere multiplied by s, its limiting expression for s = 0 is 
not required. 

From equation (17), for xs = 1, 

Substitution of equation (D5) into equation (20) yields the expression 

The various derivatives in equation (22) will  now be calculated. The total electron 
collision frequency is written 

v = v  e ec + 'es +"ei 

where 



The electron-ion cross section Qei is proportional to TL2, as can be seen from equa- 
tion (C20). 
is expressed by relations of the form 

For the electron-atom cross sections the variation with electron temperature 

(D11) 
Qec = (const)Te n 

in the immediate vicinity of the electron temperature corresponding to zero seed. 
exponent n is taken from the slope of a log-log plot of Qec as a function of Te. 
method of deducing the average momentum transfer cross section Qec(Te) from experi- 
mental data on the momentum transfer cross section Qm(v,) for a monoenergetic beam 
of electrons is described in appendix C. 

ner using equations (D7) to (D11) and (D4). 
neglected. In the limit of zero seed the result becomes 

The 
The 

The derivative of ve with respect to s can be calculated in a straightforward man- 
The slight variation of In A with s can be 

f 2(1 - xc) (" - + -  evc]}kr%) +- 1 (: - +-- 1 y )  (D12) 

xc e 2 - xc 2 - xC 2 kTe s=o 

The calculation of dvia/ds is also straightforward. It is convenient to use the ab- 
breviation 

mrtvrt R = _ - -  
rt 

where ion-ion and ion-atom collisions a re  involved, since this quantity is independent of 
s. Then the quantities C1, C2, and C3, which enter into the expression (B19) for via 
become 
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Substitution of equations (D14) to (D16) into equation (B19) and differentiation of the re- 
sult with respect to s yields in the limit of zero seed 

1 +- * 
xC 2 - xc s=o V. ia s=o 

where the eq res s ion  (D4) has been used for (dxc/ds) 
been introduced for brevity: 

and the following notation has 
s=o' 

In obtaining equations (D17) and @18), use was made of the approximation 
(eB/C4)2 << 1. This approximation is consistent with the assumptions of appendix B 
since the quantity (eB/C4)2 is of the same order as Pi. 2 

Finally, the derivative db/ds is calculated from the expression 

and the result in the limit s = 0 is 

Substitution of equations (D12), (D17), and (D20) into equation (22) yields the follow- 
ing equation for (dTe/ds)s=O: 

49 



where 

Te 
Te - T 

Substituting equation (D21) into equation (D6) and rearranging yields the result 

where the numerator N is defined as 

N c & [  2n+1+--x ,  Te ( 3 - -  2eV, kTe +&)I - 3$+pepi{T::T 

2eVc 

Te - T 'e 

+\k [ (1 - x c )  ( 3+-  kTe + T::T) +&I 
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For the cases of interest in this report, the denominator D always turns out to be 
positive. Thus the sign of dP/ds is governed by the sign of N. For N S 0, seeding 
does not improve the power density. 
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APPENDIX E 

DETAILS OF THE CALCULATION 

The break-even condition (eq. (23)) is rewritten as 
# 

Te 
Te - T 

- "ei "ec 

"e 'e 
- 3 - - -  

- ( 1 - -  ~ ~ ) ~ {  - 3 ( 1 - -  :): -+-  

where the magnetic field B enters only through Pepi, which for s = 0 becomes 

The expressions for vec/ve and vei/ve in the limit s = 0 a r e  obtained from equa- 
tions (D8) and (D10) 

- -  "ei - XcQei 

where from equations (C19) and (C20) 
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Q . = 4.34X10- l8 In A (sq m) ei  (kT, - I” 

and the limit of zero seed 

037) Ni = xC$ 

The degree of ionization xc of the carrier gas is calculated from equation (19), 
which for s = 0 becomes 

-- xC 2 - 6.04X1027 c)i*.Tei3/2 -- exp ( --  2) 
% 1 - xc 

When xc << 1, a good approximation to xc is 

Finally, the ingredients will be assembled for the quantity 9, which was defined in 
equation (D18). The quantities Rs+c and Rc+c for ion-atom collisions are calculated 
from data on ion mobilities. From the definition (D13) of Rrt and equations (C28) and 
(C29), it follows that 

where No = 2 . 6 9 ~ 1 0 ~ ~  atoms per cubic meter is the s t a n a r d  gas density and (pc 
the corresponding mobility. If p0 is given in square centimeters per volt per second, 
as is usually the case, 

rt 
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For collisions between ions of species A+ and B+, equations (C9) and (C10) give 

if it is assumed that both ion species a r e  at the temperature T of the gas. When equa- 
tion (E12) and the expression for Qii (eq. (C23)) a r e  substituted into the definition for 
the ion-ion collision coefficient RA+B+ (eq. (D13)), the following expression is obtained: 

-27 1/2 ln(A’2 + 1) RA+B+ = 1.38Xl.O mA+B+ 
1- kT \“/2 

where 

Then 4? may be written 

where 

l + r  

and A, and As a r e  the atomic weights of carr ier  gas and seed, respectively. The 
units of (IJ’o)c+c a r e  square centimeters per volt per second in equation (E16). Note 
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TABLE II. - PROPERTIES OF NOBLE GASES 

Gas Atomic Ionization 
weight of potential, 

gas, eV 
VC, carr ier  

AC 

Atomic 

weight 

I 

Background gas 

Helium I Neon I Argon I Krypton I Xenon 

Helium 4.003 
20.183 

Argon 39.944 
Krypton 83.80 
Xenon 131.30 

seed, 

AS 

24.580 
21.559 
15.755 
13.996 
12.127 

2 . 6 9 ~ 1 0 ~ '  atoms per cubic centimeter, 

PO' 

>round state 
statistical 
weight of 

:arrier gas - 

Potassium 
Rubidium 
Cesium 

[on mobility at 300' K anc 

atoms per cubic centi- 
meter (refs. 12 and 14), 

PO' 
sq cm/(v)(sec) 

gas density of 2.69X10 19 

39. 100 21.6 7.6 2.6 1.9 1.4 
85.48 20.2 6.8 2.2 1.5 1.0 

132.91 18.5 6.1 2.1 1.3 . 9 1  

TABLE m. - ATOMIC WEIGHTS AND MOBILITIES 

OF ALKALI SEED IONS IN NOBLE GASES 

[Mobility data taken from table 9-2-2 of ref. 12.) 

I 

10.8 
4.2 
1.60 
.go 
.58 

Seed 

I n F  I I I f I I 

I I I 
Lithium 
Sodium 

1 6.94 1 24.4 111.11 4.7 
22.991 22.8 8.2 3.0 Xi 1 t:; 1 

that @ vanishes when the mobilities of the seed and carrier gas ions a re  equal. 

tion (El) for prescribed values of Te, T, and I$. Then the corresponding value of B 
is calculated from equation (E2), which upon insertion of the expression for vc+c in 
terms of pc+c (eq. (C28)) and the relation between pc+c and the standard mobility 

With the previous expressions it is a simple matter to calculate BeBi from equa- 

(eq. (C29)) becomes 
@O)C+C 

(E171 
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112 
v = 6.69X10 5 (T-, ''e 11 - xc)Qec + xcQei]N: 
e 

The gas velocity required to attain the prescribed electron temperature is calculated 
from equation (24), which may be written 

The pertinent properties of the ra re  gases a r e  summarized in table II. Table III 
gives the atomic weights and mobilities of the alkali seed ions in the noble gases. The 
mobilities of the alkali ions in the noble gases a re  well predicted by classical collision 
theory in which the interaction of the ion and atom is assumed to be a polarization attrac- 
tion (ref. 12). In this case the theoretical mobility is independent of gas temperature, as 
will be assumed here, The available experimental data (ref. 13) indicate that this is a 
reasonably good assumption. The mobility of the noble gas ions in their parent gases, 
however, decreases slowly with increasing temperature because of the effect of charge 
exchange (ref. 14). The following theoretical expressions for the temperature depen- 
dence are given in reference 14 and a re  in good agreement with experiment: 

- 1 (He+ in He) = 2.96X10- 3 T 1 2  / + 3. 11X10-2 + 2. 11X10-2 T'l + 6.66 T-2 (E20a) 

PO 

- 1 (Ne+ in Ne) = 8. 69x10- 3 T 1 2  / + 9. 16X10-2 + 0. 20 T - l  + 59. 7 T-2 (E20b) 
PO 

- 1 (Ar+ in Ar) = 2.08~10- 2 T 1 2  / + 0.24 + 1.33 T - l +  1. 43X102 T-2 (E20c) 
IJ.0 

These expressions, which a r e  claimed to be valid for 50' to 1200' K, a r e  used in the 
calculations. Unfortunately, no expression for the temperature dependence of xenon was 
given. For xenon the same temperature dependence as for argon is assumed (eq. 
(E20c)), but with the constant 0. 24 replaced by 1.36 in order to give the correct value of 
po at 300° K. 

To illustrate the procedure, a sample calculation for argon seeded with cesium 
(atomic weight = 132.91) is given. An electron temperature Te = 8000' K (0. 689 ev) 
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and a gas temperature of T = 500' K a r e  chosen. First the break-even point for zero 
ion slip is determined from equation (31). From equation (E9) 

g(T ) = 7 . 7 7 ~ 1 0 ~ ~  -,/6 (0. 689)3/4exp [- ;l: = 1.57X10 9 e 

Let In A = 7.0 as a first approximation. Then from equation (E5) 

20 The electron-atom cross section for argon at this temperature is Qec = 4 . 2 5 ~ 1 0 -  
square meter, so  that Qec/Qei = 0 . 6 6 4 ~ 1 0 - ~ .  The coefficients of equation (28) are 
a = 4.33, b = 16.06, c = 0.935 (for n = 1-13), and from equation (30) 
(vec/v .) = 0.0582. The limiting gas density is from equation (31) 
(q) l im = 1 . 8 9 5 ~ 1 0 ~ ~ m - ~ ,  and for this gas density equation (E6) gives In A = 6.40. The 
calculation is repeated with this new value of In A. The ratio (vec/v .) 
tially unchanged, while the new value of @ is 1 . 5 8 2 ~ 1 0 ~ ~ ,  for which In A = 6.44. 
Another iteration gives (l$)lim = 1. 60x1022 and In A = 6.45, and further iterations are 
not required. 

The value of (qlim determines the point where Pepi = 0. For other gas den- 
sities, Pepi is calculated from equation (El). 
tion (El) a r e  positive. 
but as the gas density is increased, the coefficient of the left side changes from positive 
to negative. In the present example, this occurs at I$ = 4.69X10 
Since pepi must be positive, for the range of densities 1. 6X1022 < l$ < 4. 69X1022 the 
break-even condition cannot be satisfied; hence seed increases the power. 

> 4. 69X1022, the coefficient on the left side of equation (El) is negative, and a posi- 
tive value of pepi may be found that satisfies the equality. Figure 18(a) shows the 
variationof pepi with q. 

The sign of dP/ds in regions off the break-even curve is determined from equa- 
tion (23) as follows. If both the right and left sides of equation (23) are positive and if 
Bepi is smaller than its break-even value (determined from eq. (El)), then inequality 
(23) is satisfied and dP/ds < 0. If pepi is larger than its break-even value, the in- 
equality cannot be satisfied and dP/ds > 0. Therefore, in figure 18(a) dP/ds is positive 
above the left branch of the break-even curve and negative below the curve. When both 
the left and right sides of equation (23) are negative, as in the present example for 
I$ > 4. 69X1022, then for Bepi < ((3 (3.) 

el lim 

is essen- el  l im 

For I$ < both sides of equa- 
For l$ > the right side of equation (El) is negative, 

per cubic meter. 22 

For 

the inequality is not satisfied and 
e 1 break-even 
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Gas density, N:, atornslcu m 

(a) Bpi against gas density. (b) Magnetic field against gas density. (c) Effective electric field against gas 
density. 

Figure 18. - Results of sample calculation for cesium-seeded argon. Electron temperature, K; gas temperature, 5000 K. 

dP/ds > 0. In the region 1. 6X1022 < NE < 4. 69X1022, dP/ds > 0, as mentioned pre- 
viously. 

Once Pepi has been calculated for assigned values of NZ, Te, and T, the cor- 
responding values of the magnetic field B and the effective electric field uB(l - K) are  
obtained from equations (E17) and (E19), respectively. The results for the example a re  
shown i n  figures 18(b) and (c). 
particular magnetic field may be picked off; for example, for B = 2 webers per  square 
meter, 
these densities are read from figure 18(c) and a re  7.3X10 and 5.25X10 volts per meter, 
respectively. These two points lie on the lower branch of the break-even curve of fig- 
ure  4(b). Curves similar to those of figures 18(b) and (c) a r e  constructed for each as- 
signed electron temperature, and the densities NZ and the electric field uB(l - K) a re  
read from the curves for a specified magnetic field. The results for cesium-seeded 
argon are plotted in figure 4 for various magnetic fields. At high electron temperatures 
(above 9000' K), points on the upper branches of the break-even curves of figure 4 a r e  
obtained. 

From figure 18(b) the values of NZ corresponding to a 

23 is 5. 8X1022 and 1. 15x10 per cubic meter. The values of uB(1 - K) at 
2 2 
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